Rutgers University: Algebra Written Qualifying Exam January 2011: Day 1 Problem 6 Solution

Exercise. Prove there are no simple groups of order 80.

Solution.	
Let G be a group of order 80. We want to show that there is a normal subgroup of G that is not $\{e\}$ or G. So first find the prime factors of $ G = 80$.	
$80 = 2^4 \cdot 5.$	
By the third Sylow theorem,	
$n_2 \equiv 1 \mod 2 \qquad \text{and} \qquad n_2 \mid 5 \qquad \Longrightarrow \\ n_5 \equiv 1 \mod 5 \qquad \text{and} \qquad n_5 \mid 16 \qquad \Longrightarrow$	$n_2 = 1 \text{ or } 5$ $n_5 = 1 \text{ or } 16$
If the number of 5–Sylow subgroups is $n_5 = 1$, then the 5–Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem. Thus, G is not simple.	
If $n_5 \neq 1$ then there are $n_5 = 16$ 5–Sylow subgroups. $\implies G$ has $16(5-1) = 64$ elements of order 5. Therefore, G has $80 - 64 = 16$ other elements. These must be the elements of the 2-Sylow subgroup, which has order $2^4 = 16$. Thus, the number of 2–Sylow subgroup must be $n_2 = 1$. \implies the 2-Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem. Thus, G is not simple.	