Rutgers University: Algebra Written Qualifying Exam
 January 2011: Day 1 Problem 6 Solution

Exercise. Prove there are no simple groups of order 80.

Solution.

Let G be a group of order 80 . We want to show that there is a normal subgroup of G that is not $\{e\}$ or G. So first find the prime factors of $|G|=80$.

$$
80=2^{4} \cdot 5
$$

By the third Sylow theorem,

$$
\begin{array}{llccc}
n_{2} \equiv 1 & \bmod 2 & \text { and } & n_{2} \mid 5 & \Longrightarrow
\end{array} \quad \begin{gathered}
n_{2}=1 \text { or } 5 \\
n_{5} \equiv 1
\end{gathered} \bmod 50 \text { and } \quad n_{5} \left\lvert\, 16 \quad \Longrightarrow \quad \begin{aligned}
& n_{5}=1 \text { or } 16
\end{aligned}\right.
$$

If the number of 5 -Sylow subgroups is $n_{5}=1$, then the 5 -Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem.
Thus, G is not simple.

If $n_{5} \neq 1$ then there are $n_{5}=165$-Sylow subgroups.
$\Longrightarrow G$ has $16(5-1)=64$ elements of order 5 .
Therefore, G has $80-64=16$ other elements.
These must be the elements of the 2-Sylow subgroup, which has order $2^{4}=16$.
Thus, the number of $2-$ Sylow subgroup must be $n_{2}=1$.
\Longrightarrow the 2-Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem.
Thus, G is not simple.

